Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biochim Biophys Sin (Shanghai) ; 55(7): 1084-1098, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294105

RESUMO

Ubiquitination, a post-translational modification that attaches one or more ubiquitin (Ub) molecules to another protein, plays a crucial role in the phase-separation processes. Ubiquitination can modulate the formation of membrane-less organelles in two ways. First, a scaffold protein drives phase separation, and Ub is recruited to the condensates. Second, Ub actively phase-separates through the interactions with other proteins. Thus, the role of ubiquitination and the resulting polyUb chains ranges from bystanders to active participants in phase separation. Moreover, long polyUb chains may be the primary driving force for phase separation. We further discuss that the different roles can be determined by the lengths and linkages of polyUb chains which provide preorganized and multivalent binding platforms for other client proteins. Together, ubiquitination adds a new layer of regulation for the flow of material and information upon cellular compartmentalization of proteins.


Assuntos
Poliubiquitina , Ubiquitina , Humanos , Poliubiquitina/química , Poliubiquitina/metabolismo , Ubiquitinação , Ubiquitina/metabolismo
2.
Biophys Rev ; 14(1): 55-66, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340613

RESUMO

It has been over two decades since paramagnetic NMR started to form part of the essential techniques for structural analysis of proteins under physiological conditions. Paramagnetic NMR has significantly expanded our understanding of the inherent flexibility of proteins, in particular, those that are formed by combinations of two or more domains. Here, we present a brief overview of techniques to characterize conformational ensembles of such multi-domain proteins using paramagnetic NMR restraints produced through anisotropic metals, with a focus on the basics of anisotropic paramagnetic effects, the general procedures of conformational ensemble reconstruction, and some representative reweighting approaches.

3.
Chemphyschem ; 22(14): 1505-1517, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33928740

RESUMO

Linear polyubiquitin chains regulate diverse signaling proteins, in which the chains adopt various conformations to recognize different target proteins. Thus, the structural plasticity of the chains plays an important role in controlling the binding events. Herein, paramagnetic NMR spectroscopy is employed to explore the conformational space sampled by linear diubiquitin, a minimal unit of linear polyubiquitin, in its free state. Rigorous analysis of the data suggests that, regarding the relative positions of the ubiquitin units, particular regions of conformational space are preferentially sampled by the molecule. By combining these results with further data collected for charge-reversal derivatives of linear diubiquitin, structural insights into the factors underlying the binding events of linear diubiquitin are obtained.


Assuntos
Ubiquitinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...